About 2,530,000 results
Open links in new tab
  1. 如何通俗易懂地讲解什么是 PCA(主成分分析)? - 知乎

    如何通俗易懂地讲解什么是 PCA(主成分分析)? 博主没学过数理统计,最近看 paper 经常遇到,但是网上的讲解太专业看不懂,谁能通俗易懂的讲解一下,主成分分析作用是什么?

  2. 如何通俗易懂地讲解什么是 PCA(主成分分析)? - 知乎

    如何通俗易懂地讲解什么是 PCA(主成分分析)? 博主没学过数理统计,最近看 paper 经常遇到,但是网上的讲解太专业看不懂,谁能通俗易懂的讲解一下,主成分分析作用是什么?

  3. R统计绘图-PCA分析绘图及结果解读 (误差线,多边形,双Y轴图、 …

    Apr 27, 2022 · 虽然PCA和RDA分析及绘图都写过教程,但是对于结果的解释都没有写的很详细,刚好最近有人询问怎样使用FactoMineR factoextra包进行PCA分析。所以使用 R统计绘图- …

  4. 独立成分分析 ( ICA ) 与主成分分析 ( PCA ) 的区别在哪里? - 知乎

    但在ICA之前,往往会对数据有一个预处理过程,那就是PCA与白化。 白化在这里先不提,PCA本质上来说就是一个降维过程,大大降低ICA的计算量。 PCA,白化后的结果如下图所示。 可 …

  5. PCA图怎么看? - 知乎

    PCA结果图主要由5个部分组成 ①第一主成分坐标轴及主成分贡献率主成分贡献率,即每个主成分的方差在这一组变量中的总方差中所占的比例 ②纵坐标为第二主成分坐标及主成分贡献率 ③ …

  6. 什么时候使用PCA和LDA? - 知乎

    PCA与LDA的区别: (1)PCA是无监督模型,利用正交变换来对一系列可能相关的变量的观测值进行线性变换,从而投影为一系列线性不相关变量的值; (2)LDA是有监督模型,假设了 各 …

  7. 独立成分分析 ( ICA ) 与主成分分析 ( PCA ) 的区别在哪里? - 知乎

    一、概述 主成分分析(Principal Component Analysis,PCA)是一种用于数据降维的方法,其核心目标是在尽可能保留原始数据信息的前提下,将高维数据映射到低维空间。该算法基于方差 …

  8. 怎么理解probabilistic pca? - 知乎

    1、PCA的两种理解:最大化方差、最小化投影损失 这部分理解比较常见,公式的推导也比较容易,可以用拉格朗日乘子法发现两种理解的最终解相同。

  9. 主成分分析(PCA)主成分维度怎么选择? - 知乎

    主成分分析(PCA)主成分维度怎么选择? 想请教一下各位大神,在主成分分析中,对于N阶方阵从其特征向量中提取K个主特征向量,这里我想问一下,这个K值是怎么设定的? 有人说是盖 …

  10. 数据降维除了PCA等传统的方法,现在有没有比较新颖的算法呢?

    一般Pca降维非线性数据的效果似乎只是对高维数据做了下在低维空间的投影。 四:总结 这篇文章主要讲述了3种降维技术对非线性数据的降维处理, 我们可以感受到Kpca算法在选择恰当的核 …